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S U P P L E M E N T A R T I C L E

Avian Influenza: An Agricultural Perspective

Andrea Morgan
United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Washington, DC

Recent outbreaks of infection with highly pathogenic H5N1 strains of avian influenza virus in poultry in Asia,
Africa, Europe, and the Middle East have raised concern over the potential emergence of a pandemic strain
that can easily infect humans and cause serious morbidity and mortality. To prevent and control a national
outbreak, the US Department of Agriculture (USDA) conducts measures based on the ecology of avian influenza
viruses. To prevent an outbreak in the United States, the USDA conducts surveillance of bird populations,
restrictions on bird importation, educational outreach, and regulation of agricultural practices, in collaboration
with local, state, and federal organizations. To manage an outbreak, the USDA has in place a well-established
emergency management system for optimizing efforts. The USDA also collaborates with international orga-
nizations for disease prevention and control in other countries.

Avian influenza is a disease that mainly affects birds

but can also occur in mammals. It is caused by influenza

A virus, which is continuously evolving among its hosts,

producing viral strains that have contributed to occa-

sional pandemics in humans [1]. The potential impact

of pandemic influenza was realized 3 times during the

past century. The most devastating pandemic recorded,

the 1918–1920 pandemic of “Spanish influenza,” is es-

timated to have caused the deaths of ∼50 million people

worldwide [2].

Concerns about another influenza pandemic have

arisen as a result of recent outbreaks of infection with

highly pathogenic strains of H5N1 influenza A viruses

in poultry. These strains of H5N1 appear to be evolving

rapidly, their host range has expanded to include mi-

gratory birds and mammals, and their geographic

spread has increased from Asia to Africa, Europe, and

the Middle East. To safeguard the United States from
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avian influenza and to prevent another influenza pan-

demic, the US Department of Agriculture (USDA)

conducts specific measures for preventing and for con-

taining and eradicating outbreaks of influenza in ani-

mals, based on the ecology of avian influenza viruses.

THE ECOLOGY OF INFLUENZA A
VIRUSES

The rapid rate of evolution of influenza A viruses is

attributed to 2 properties of the virus genome: it com-

prises 8 segments of RNA, and viral RNA replication

is susceptible to the infidelity of RNA polymerases,

which lack proofreading functions [3]. Because the ge-

nome is segmented, it is particularly susceptible to reas-

sortment. When 2 different influenza viruses infect a

single cell, the 2 viral genomes may recombine to pro-

duce progeny viruses containing a mixture of RNA seg-

ments from the 2 parental viruses. These events result

in a rate of evolution estimated to be 1 million times

greater than that of eukaryotic genes [4] and allow for

the acquisition of high pathogenicity and transmissi-

bility to new species.

Although aquatic birds are the reservoir for all rec-

ognized influenza A hemagglutinin (HA) and neura-

minidase (NA) subtypes, some viruses have been de-

tected in other species. However, there appears to be a

substantial degree of species specificity. For example,

H1N1 and H3N2 have been detected in swine, whereas

H3N8 and H7N7 are found in horses [1]. Recently, the
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Figure 1. Global flyways, demonstrating partial overlap of flyways between regions [8]

horse H3N8 virus jumped the species barrier to cause infections

and initiate an evolving outbreak in canines [5]. Furthermore,

under experimental conditions, viruses derived from one spe-

cies often do not replicate efficiently in another species. Inter-

species transmission of influenza A viruses to a novel host can

occur, resulting in extensive disease and an increased rate of

viral mutation with viral adaptation [6]. Studies implicate mul-

tiple viral genes in partial host range restriction, although the

precise roles of these genes in host specificity are unknown [1].

Attention has focused on HA, the major surface antigen of

influenza, responsible for binding of virions to host cell recep-

tors and for fusion between the envelope and the host cell. NA,

another major surface glycoprotein of the virion, is essential in

pathogenesis because it functions to free virus particles from

host cell receptors, permitting progeny release from the cell and

facilitating spread of the virus. The internal proteins encoded

by influenza viruses may also contribute to host determination.

Aquatic wild birds are the natural reservoir of influenza A

viruses and are thought to be the principal source of viral spread

to other species. Influenza A viruses are ubiquitous in wild

ducks and migratory shorebirds [1]. Aquatic birds can be in-

fected with all subtypes of influenza A viruses, and infection

is typically nonpathogenic, suggesting adaptation to the hosts.

Compared with other species, aquatic birds appear to be in a

state of evolutionary stasis with influenza A viruses.

Transmission of influenza A viruses from aquatic birds likely

occurs through shared water sources. In aquatic birds, influenza

A viruses replicate primarily in cells lining the gastrointestinal

tract and are excreted in high concentrations in feces, which

may contaminate water [1]. Influenza A viruses can remain

infectious in water for 100–200 days, depending on water tem-

perature [7].

Transmission of influenza A viruses by infected migratory

birds may result in wide geographic spread of viruses. Although

flyways of bird populations are partially separated (figure 1),

allowing distinct gene pools of viruses to develop [1], evidence

suggests that there is interregional transmission by infected

migratory birds. One study has demonstrated that H2 influenza

A viruses isolated from shorebirds in North America between

1985 and 1998 contain genes belonging to a Eurasian lineage

of H2 viruses [9]. Another study demonstrates that H2 viruses

isolated in 2001 from migratory ducks that congregate in Japan

on their flyway from Siberia contain genes derived from Amer-

ican and Eurasian lineages [10].

In terrestrial birds, most subtypes of influenza A viruses have

been detected and are typically nonpathogenic, except for some

strains of subtypes H5 and H7 [1]. Typical signs of infection

with pathogenic strains include decreased egg production, re-

spiratory symptoms, excessive lacrimation, sinusitis, cyanosis

of unfeathered skin, edema of the head and face, ruffled feath-

ers, diarrhea, and nervous disorders. Sources of infection may

include infected aquatic birds and other animals, such as swine.

Infected poultry may transmit viruses to each other and, pos-

sibly, to wild birds. During an outbreak of infection with a

highly pathogenic strain of influenza, H7N7, in poultry in the

Netherlands in 2003, H7N7 was detected in wild birds kept in

captivity with infected poultry [11]. Although birds typically

transmit influenza viruses via feces, there is evidence that quail

shed influenza viruses primarily by the aerosol route [12]. In-

fluenza A viruses have also been detected in the internal con-
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Figure 2. Number of outbreaks of infection with avian influenza virus subtype H5N1 in poultry, from the end of 2003 to March 2006 [21]

tents of eggs from infected chickens, another potential source

of viral transmission [13]. Trade and illegal smuggling of poul-

try are, therefore, a means of disseminating the viruses.

Swine are a potential source of interspecies transmission of

influenza A viruses [1]. In swine, as in humans, influenza A

viruses are transmitted via the respiratory system and may cause

nasal discharge, coughing, fever, labored breathing, conjunc-

tivitis, and pneumonia [1]. Pigs may transmit infection to hu-

mans. Slaughterhouse workers frequently exhibit antibodies to

swine influenza, and, occasionally, swine viruses are isolated

from people with respiratory illness. There has been no proof

in the recent past that transmission to humans has led to a

human epidemic. Nevertheless, there is concern that pigs may

serve as mixing species for reassortment between avian and

human influenza viruses. Pigs express cell surface receptors for

human and avian influenza viruses in the trachea, which pro-

vides a milieu conducive to coinfection and genetic reassort-

ment between human and avian strains [14]. Pigs can be ex-

perimentally infected with human strains of influenza viruses

[15]. Furthermore, during 1998, there were severe outbreaks

of H3N2 infection in swine in the United States, and these

viruses were found to be double-reassortant viruses containing

genes of human and swine viruses and triple-reassortant viruses

containing genes of human, swine, and avian viruses [16, 17].

Reassortant viruses in pigs, containing human and swine gene

segments, have also been detected in Japan and Europe [18,

19]. Triple-reassortant viruses, containing gene segments from

avian, human, and swine strains, have been detected in pigs in

Europe [20].

RECENT OUTBREAKS OF INFECTION
WITH HIGHLY PATHOGENIC H5N1

Some noteworthy features of the ongoing outbreaks of infection

with highly pathogenic H5N1 in Asia, Europe, Africa, and the

Middle East are the number of affected animals and the wid-

ening geographic spread [21]. Since the initial outbreak in 1997

in poultry in farms and live-bird markets in Hong Kong, there

have been 14000 outbreaks of H5N1 infection in poultry,

mostly in Asia, and outbreaks in animals have been reported

in at least 37 countries (figure 2). Although human activities

may contribute to the geographic spread of H5N1, migratory
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birds may also play an important role, as is suggested by out-

breaks in migratory birds in remote areas such as Mongolia

[22]. Outbreaks of H5N1 infection in some aquatic birds, in-

cluding swans and certain types of geese, have been highly

pathogenic, which is a new development, because influenza

viruses have rarely been reported to be pathogenic in aquatic

birds [23]. Another new characteristic of H5N1 viruses in

aquatic birds is that viral shedding occurs from both the gut

and respiratory tract. More-recent strains of H5N1 viruses have

demonstrated low pathogenicity in experimentally inoculated

ducks [24]. There has also been evidence of natural infection

of apparently healthy migratory birds with H5N1 [25]. Because

infection is not fatal, it is possible that these birds harbor the

virus and transmit it interregionally during migration. Evidence

of interregional transmission by migratory birds is provided by

the isolation of genetically similar H5N1 viruses from migratory

birds at 2 distinct sites, ∼1700 km apart.

Another feature of these outbreaks is that there have been

sporadic cases of direct transmission of viruses from poultry to

humans, resulting in serious morbidity and mortality [26]. Most

infected patients have had a history of direct contact with poultry:

behaviors implicated in transmission include handling, plucking,

and preparing diseased birds and consumption of ducks’ blood

or undercooked poultry. Although there have been suggestions

of possible human-to-human transmission with close contact,

there is no evidence of aerosol transmission. Specifically, se-

roprevalence studies of exposed health care workers and family

contacts indicate that interpersonal transmission is inefficient.

H5N1 strains have infected and caused morbidity and mor-

tality in felines, an unusual event [27]. This expanded range of

hosts of H5N1 viruses increases the opportunity for viral evo-

lution. During a December 2003 outbreak in poultry in Thailand,

2 tigers and 2 leopards at a local zoo were infected with H5N1

virus after being fed chicken carcasses, which resulted in high

fever, respiratory distress, and death [28]. At the same zoo, there

was also evidence of horizontal transmission of H5N1 between

tigers: infection and disease spread to several tigers, which had

not been fed raw chicken carcasses and were not in contact with

other species [29]. The potential for intratracheal and horizontal

transmission and transmission by feeding on virus-infected birds

was confirmed experimentally in cats [30, 31].

Currently, there is no evidence that highly pathogenic strains

of avian influenza, including H5N1, exist in the United States.

Historically, there have been 3 outbreaks of infection with high-

ly pathogenic strains in poultry in this country—in 1924, 1983,

and 2004—but none of these outbreaks resulted in recognized

human illness. In 1924, an outbreak of H7 infection was de-

tected in and contained to live-bird markets in the eastern

United States [32]. This outbreak was contained and eradicated.

In 1983–1984, there was an outbreak of H5N2 infection in

poultry in the northeastern United States [33]. This outbreak

was contained and eradicated after the destruction of ∼17 mil-

lion birds. In 2004, there was an outbreak of H5N2 infection

in chickens in the southern United States. Although the clinical

signs in the affected flock were mild and consistent with a low-

pathogenicity strain of avian influenza, the amino acid se-

quences of the viral protein HA were consistent with those of

highly pathogenic strains; therefore, the virus was classified as

highly pathogenic [34]. The disease was quickly eradicated as

a result of close collaboration between the USDA and state,

local, and industry leaders.

EFFORTS BY THE USDA TO PREVENT
AND CONTAIN OUTBREAKS OF INFECTION
WITH HIGHLY PATHOGENIC STRAINS
OF AVIAN INFLUENZA VIRUS

The USDA takes the following measures to prevent an outbreak

of infection with highly pathogenic strains of avian influenza

in the United States: surveillance of bird populations, restric-

tions on bird importation, educational outreach, and regulation

of agricultural practices. Clearly defined policies are also es-

tablished for containing and eradicating outbreaks of infection

with highly pathogenic strains of avian influenza virus.

Surveillance is conducted in collaboration with federal, state,

and industry partners to detect influenza A virus infection in

live-bird markets, commercial flocks, backyard flocks, and mi-

gratory bird populations [32]. Although highly pathogenic

strains of avian influenza virus are the primary target for sur-

veillance, close attention is also given to 2 subtypes of low-

pathogenicity strains, H5 and H7, which have the potential to

mutate into highly pathogenic strains [35]. Diagnosis of infec-

tion is made using an assay developed by the Agricultural Re-

search Service in 2002 [35]: a real-time, reverse-transcription–

polymerase chain reaction test that produces results within 3

h and can detect H5 and H7 subtypes within a limit of ∼103–

104 gene copies [36]. This test was used successfully in the

eradication of an outbreak in Texas in 2004 [35]. The test has

been distributed to the National Animal Health Laboratory

Network, which includes university and state veterinary diag-

nostic laboratories throughout the United States. Random test-

ing occurs in live-bird markets, commercial flocks, wild mi-

gratory birds, and birds that show signs of illness [35].

To address the persistence of low-pathogenicity strains of

avian influenza virus that are associated with the live-bird mar-

keting system, random testing is performed at least quarterly

in live-bird markets and in poultry distributors [37]. In ad-

dition, live-bird markets are required to undergo quarterly clo-

sure with depopulation, cleaning, disinfection, and down time

of at least 24 h. This approach has had a significant impact on

reducing transmission of influenza A viruses in live-bird mar-

kets [38]. Bird sources are also monitored: at least 30 birds per

flock are tested 10 days before shipment to a distributor or
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Figure 3. The Incident Command System structure in place at the United States Department of Agriculture (USDA) for responding to outbreaks of
avian influenza [46]. The Incident Command System structure, a model for disaster-workforce organization, was developed by the USDA Forest Service
and adopted by the Federal Emergency Management Agency and other emergency management organizations. The Incident Command System is all-
inclusive and allows people from various state agencies, private industry, and multiple federal agencies to work together with a common goal and
mission.

live-bird market [37]. If no cases are found, documentation is

offered of the absence of infection with H5 and H7 subtypes

of influenza A virus.

The National Poultry Improvement Plan provides a coop-

erative industry-state-federal program to certify that commer-

cial poultry flocks are free of avian influenza and provides

workshops for participants regarding diagnosis of avian influ-

enza [39, 40]. To encourage noncommercial poultry and bird

owners to report sick birds for testing, the Animal and Plant

Health Inspection Service Veterinary Services division of the

USDA conducts an outreach campaign called “Biosecurity for

the Birds” [41].

A National Animal Health Surveillance System has also been

created. This is a network of multiple government agencies and

private entities, with the aim of protecting animal health, public

health, national economic viability, and social welfare associated

with animal populations [42]. As of October 2005, the National

Animal Health Surveillance System has created an interagency

H5N1 Working Group, under the direction of the Department

of Homeland Security Policy Coordination Committee, with

representation from the Department of Health and Human

Services, the Department of the Interior, the International As-

sociation of Fish and Wildlife Agencies, the State of Alaska,

and Animal and Plant Health Inspection Service Veterinary

Services, to develop a surveillance plan to detect the first oc-

currence of H5N1 infection in wild waterfowl in Alaska [43].

The USDA maintains trade restrictions on the importation

of poultry and poultry products from all affected countries. No

birds can be imported from a country found to have the H5N1

strain of avian influenza. All imported live birds must be quar-

antined for 30 days at a USDA facility and tested for influenza

A virus before entering the United States. This requirement

also covers returning pet birds of US origin [35]. To reduce

the risk of avian influenza spreading to the United States, the

USDA also collaborates with international organizations, in-

cluding the World Health Organization for Animal Health and

the United Nations Food and Agriculture Organization, to assist

countries affected by highly pathogenic strains of avian influ-

enza virus and neighboring countries with disease prevention,

control, and eradication [44].

On detection of H5 or H7 subtypes of influenza A virus in

a live-bird market, poultry distributor, or bird production site,

the facility is required to undergo mandatory closure, depop-

ulation, cleaning, and disinfection, and possible sources of in-

fection are investigated. Before they are reopened, markets must

be found to be negative on 3 consecutive monthly tests [37].

Indemnification programs are designed to encourage reporting

of outbreaks and cooperation with disease control programs [45].

Federal indemnification is available for facilities that follow all

program directives. Indemnification programs for outbreaks of

infection with low-pathogenicity strains of avian influenza are

generally managed by the states. Some industry associations

have compensation funds. The USDA offers indemnification

of 50% of fair market value for control of low-pathogenicity

strains of avian influenza and 100% indemnification for out-

breaks of highly pathogenic strains.

In the event of an outbreak of avian influenza, the USDA

has a response structure in place called the “Incident Command

System” (figure 3). This is a standardized organizational emer-

gency management system designed to optimize efforts and

minimize hindrance of efforts by jurisdictional boundaries [47].

This system organizes response efforts into 5 major manage-
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ment categories: command sets objectives and priorities and

organizes the response, operations conducts tactical operations,

planning prepares and documents the plan, logistics provides

the needed resources and services, and finance/administration

monitors costs. The Incident Command System is the result

of decades of lessons learned in the organization and manage-

ment of emergency incidents, and it has been proven effective

in several emergencies, including an outbreak of infection with

low-pathogenicity strains of avian influenza virus in Virginia

in 2002 [48].

On detection of highly pathogenic strains of avian influenza

in poultry, the Animal and Plant Health Inspection Service

would also quickly notify the Centers for Disease Control and

Prevention to initiate their involvement, in coordination with

state and local health departments, to minimize disease trans-

mission to humans [44].

The Animal and Plant Health Inspection Service is currently

considering the use of vaccines in poultry in the event of an

outbreak in the United States [44]. As of November 2005, the

USDA stockpiled 40 million doses of vaccine for 2 types of H5

and 2 types of H7 viruses [45]. Vaccination can act as a firewall

against disease spread, reducing disease occurrence, the amount

of virus in circulation, susceptibility to infection, and the level

and duration of viral shedding. Vaccination may also induce

immunity to more than one strain of a subtype and/or to more

than one subtype of avian influenza virus [49–52]. Vaccination

has been used successfully to control outbreaks of infection

with low-pathogenicity strains of avian influenza in Italy in

2000–2002 [53] and Utah in 1995 [54], an outbreak of infection

with a highly pathogenic strain in Mexico in 1995 [55], and

an H5N1 infection outbreak in Hong Kong in 2002 [56]. Fur-

thermore, in an experimental model, vaccination was found to

reduce transmission to an extent that would prevent a major

outbreak [57]. However, inappropriate use of vaccination may

be dangerous, because it allows silent transmission of infection

from asymptomatic birds [58], which may result in selection

of antigenically divergent strains [59]. To avoid this potential

danger, vaccination must go in tandem with monitoring sys-

tems to differentiate infected animals from vaccinated animals

[60]. Another disadvantage of vaccination is that many coun-

tries will not import vaccinated poultry.

An approach that is not currently used by the USDA for

controlling an outbreak of avian influenza is the use of antiviral

medications in animals. This approach could pose a threat to

the treatment of human infection with influenza A viruses [61].

Improper use of antiviral drugs may promote the development

of drug-resistant strains, thus eliminating the possibility of us-

ing these drugs to treat human influenza cases. Already, a

marker of amantadine resistance has been detected in isolates

of H5N1 obtained from patients in China in 2003 and in isolates

from birds and humans in Thailand, Vietnam, and Cambodia

[62]. A marker of oseltamivir resistance was detected in isolates

from 2 of 8 Vietnamese patients [63].

The Agricultural Research Service is also conducting research

to support efforts of the Animal and Plant Health Inspection

Service, the Centers for Disease Control and Prevention, and

the poultry industry to control avian influenza [64]. Research-

ers at the Agricultural Research Service are identifying and

characterizing avian influenza in wild bird populations and

domestic bird and swine populations, to better understand the

basic ecology of avian influenza viruses [65]. They are studying

factors that affect transmission between birds and molecular

adaptation from migratory birds to poultry. Researchers are

developing and evaluating techniques to predict which forms

of low-pathogenicity strains of avian influenza might transform

into highly pathogenic strains. They are also assisting in trade

negotiations of poultry products by determining the risk of the

presence of low- and high-pathogenicity viruses in poultry

meat, the ability of pasteurization to inactivate influenza viruses

in egg products, and the ability of cooking to kill highly path-

ogenic influenza viruses in poultry meat.

CONCLUSION

The expanding size and geographic spread of outbreaks of

H5N1 infection throughout Asia and in Africa, Europe, and

the Middle East has drawn attention to the potential threat of

avian influenza to human health and the critical importance

of containment and eradication in animals. It has also resulted

in a greater appreciation and further examination of the ecology

of influenza A viruses in animals. To safeguard the United States

from highly pathogenic avian influenza, the USDA conducts

measures to prevent, control, and eradicate outbreaks in an-

imals. These measures include close collaboration with local,

state, national, and international organizations and the imple-

mentation of a well-defined and well-established infrastructure

for emergency response.
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